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Numerical study of soliton scattering in inhomogeneous optical fibers

Yoji Kubota and Takashi Odagaki
Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

~Received 21 August 2002; published 13 August 2003!

Using a variable-coefficient nonlinear Schro¨dinger equation, transmission profile of a single soliton in the
optical fiber with an inhomogeneous region is studied numerically. It is found that the transmitted wave
contains two solitons which form a bound state when the difference of the dispersion coefficient between the
inhomogeneous and the homogeneous regions is large enough. When the amplitude of the transmitted wave is
small, the transmitted wave is apt to contain a bound state soliton. With the increase of the length of the
inhomogeneous region, a quantityE3, which is the conserved quantity of the constant-coefficient nonlinear
Schrödinger equation, for the transmitted wave converges to an asymptotic value with oscillation. It is found
that the nonsoliton wave part ofE3 for the transmitted wave converges to an asymptotic value rapidly com-
pared with other contributions toE3. We find the condition for the parameters of the inhomogeneous region
that a stable soliton can exist on the entire fiber.
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I. INTRODUCTION

It is well known that optical fibers can support solitons
a balance of nonlinear effects and group velocity dispers
in anomalous dispersion regime. This fact was first predic
by Hasegawa and Tappert@1# and was demonstrated expe
mentally by Mollenaueret al. @2#. Since then, the soliton
propagation in optical fibers has been widely studied fr
the interest of fundamental aspects and the potential for
plication to optical communication@3#. The propagation of
solitons in optical fibers have been investigated theoretic
using the nonlinear Schro¨dinger ~NLS! equation.

In realistic optical fibers, characteristic parameters of
fiber are not constant but can depend on the location in
optical fiber. In other words, these parameters can h
space-coordinate dependence. For example, the variatio
the group velocity dispersion and the nonlinear coeffici
are described by the variable-coefficient NLS~vNLS! equa-
tion. In these optical fibers, the incident soliton is modula
and is scattered by the inhomogeneity. Some propertie
the vNLS equation have been studied@4–8#. When the co-
efficients of the vNLS equation satisfy a constraint, the eq
tion possesses the Painleve´ property @4,5#, which relates to
the integrability of the equation. Tian and Gao@6# found an
auto-Bäcklund transformation and some special solutions
the vNLS equation, when its variable coefficients have a s
cial relation. The modulational instability of the continuo
wave in optical fibers was investigated and it was shown
the unstable spectral width is widened by random coeffic
@7#. Grimshaw@8# used a multiple-scale method and co
structed a soliton like solution for the vNLS equation varyi
slowly with the propagation.

In this paper, we consider the propagation of solitons
the optical fiber, where the group velocity dispersion h
space-coordinate dependence. Considering a simple m
we investigate numerically the scattering of a single soli
due to an inhomogeneous region. This model will give so
basic principles in the study of the soliton transmission, a
the results of this model can be applied to more complica
situations. The main objective of this study is to investig
1063-651X/2003/68~2!/026603~9!/$20.00 68 0266
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the behavior of transmitted waves, and it is found that
transmitted waves contain several solitons, some of wh
form a bound state. We clarify the condition for the transm
ted waves to possess a bound state soliton. Note that An
sonet al. @9# studied soliton tunneling using a similar mod
to improve a single-soliton compression by a fiber, the d
persion of which changes stepwise.

The present paper is organized as follows. The mode
introduced in Sec. II. In Sec. III, we explain the numeric
method to calculate the parameters of solitons which eme
from the transmitted waves. In Sec. IV, numerical results
shown when a single soliton is injected into an inhomog
neous region of finite length. We investigate the depende
of the transmitted wave profile on the length of the inhom
geneous region and the intensity of nonuniformity. In Sec
we estimate the pulse shape of the transmitted waves f
very long inhomogeneous region by applying the results
Satsuma and Yajima@10# and compare this estimation wit
the results of the numerical calculation. Section VI is d
voted to the discussion. Finally, in Sec. VII, we show th
when the parameters of the optical fiber satisfy a cert
condition, continuous waves do not emerge from the incid
single soliton in the entire fiber, and the transmitted wave
propagate as a single soliton.

II. MODEL

We consider light pulses, which are linearly polarized,
an inhomogeneous optical fiber and study the evolution o
electric-field envelopeA. The evolution of the envelopeA is
governed@3# by

i
]A

]z
1 i

1

vg

]A

]t
2

1

2
b2~z!

]2A

]t2
1guAu2A50, ~2.1!

wherez is the distance of transmission along the fiber,t is the
time, vg is the group velocity of the light pulse,b2 is the
group velocity dispersion coefficient, andg is the nonlinear
coefficient which is inversely proportional to the effectiv
core area. Coefficientb2 is a real function ofz. We restrict
©2003 The American Physical Society03-1
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ourselves to anomalous dispersion regimeb2,0, so that the
optical fiber can support bright solitons.

We introduce dimensionless variables defined by

u5AgT0
2

ub̃2u
A, j5

ub̃2u

2T0
2

z, t5
1

T0
~ t2z/vg!, ~2.2!

where T0 is the width of the incident pulse andb̃2 is the
group velocity dispersion coefficient of an ideal optical fib
which has no fluctuation. Heret is the dimensionless de
layed time. Under transformation~2.2!, the equation of mo-
tion ~2.1! is reduced to the vNLS equation

i
]u

]j
1a~j!

]2u

]t2
12uuu2u50, ~2.3!

wherea(j)52b2(z)/ub̃2u.
We consider optical fibers, a part of which has an eleva

value of the group velocity dispersionb2. We set

a~j!5H 1 for j<j1 andj11L<j

11e for j1,j,j11L,
~2.4!

wheree is interpreted as the intensity of nonuniformity,L is
the dimensionless length of the inhomogeneous region sc
by 2T0

2/ub̃2u. Sincej1 does not affect the results in our ca
culation, we setj151 in the following calculation without
loss of generality.

The NLS equation with a constant coefficient,a(j)51 in
Eq. ~2.3!, supports a single-soliton solution given by

u~j,t;m,h!5h sech@h~t1mj!#

3expF2 i
m

2
t2 i S m2

4
2h2D jG , ~2.5!

wherem and h are arbitrary real parameters of the solit
and represent the velocity and the amplitude, respectiv
@11#.

At the left end of the fiberj50, we prepare a single
soliton as the incident wave~Fig. 1!. Without loss of gener-
ality we can set the parameters of the incident solitonm
50 andh51 ~see Appendix A!. We integrate numerically
Eq. ~2.3! over j using the second-order split-step Four
method@3,12–14# imposing periodic boundary condition i
t. Since we prepare sufficiently large space oft and finish
the numerical calculation before waves reach the boundar
t, the boundary condition does not affect the results. Aj
5j1 andj5j11L, the conditions are imposed.

FIG. 1. The perspective of an incident soliton on the opti
fiber with an inhomogeneous region~named region II!, the length of
which is L. Regions I and III are homogeneous regions.
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lim
«→10

u~j11«,t!5 lim
«→10

u~j12«,t!, ~2.6!

lim
«→10

u~j11L1«,t!5 lim
«→10

u~j11L2«,t!. ~2.7!

The NLS equation has an infinite set of constants of m
tion @11#, among which the following three are well-know
constants of motion:

E15E uuu2dt, ~2.8!

E25E ImFu
]u*

]t Gdt, ~2.9!

E35E S U]u

]tU
2

2uuu4Ddt, ~2.10!

where the asterisk denotes complex conjugate. In the op
fiber under study, the constants of motion,E1 and E2, rep-
resent the energy and the mean frequency weighted by
intensity of optical pulses, respectively.

The quantitiesE1 andE2 are also conserved in the vNL
equation@8#, and this can be proved by following the proc
dure of Pathria and Morris@15# for our model. Therefore,
when discretization is used, the steps should be chose
thatE1 andE2 stay constant. These constants are determi
by the incident wave and are given byE152, E250 in our
paper.

On the other hand,E3 is not conserved in the vNLS equa
tion. Note that, in the conventional NLS equation where
time and the space coordinates are interchanged,E3 is cor-
responds to the NLS Hamiltonian. We calculate this quan
E3 for various parameters in later sections to quantify
effects of the inhomogeneity.

III. THE NUMBER OF SOLITONS

A. Inverse scattering method

Generally, a solutionu to Eq. ~2.3! consists of severa
solitons and dispersive wave continua. We denote the n
ber of the solitons byN. Each soliton is characterized by tw
parametersm j and h j ( j 51, . . . ,N). The solitons move
with its characteristic velocitym j on the (t,j) domain and
the nonsoliton waves spread away as they propagate. S
solitons may have zero velocity,m j50, and we call these
solitons ‘‘stationary solitons.’’ If some of the velocitiesm j
@e.g., j 51, . . . ,m(<N)] are the same, these solitons ca
form a bound state, and it is called them-bound soliton@11#.

We use a method to calculate the parameters (m j ,h j ) of
the solitons which emerge from a waveu. According to the
inverse scattering method@10,11,16#, the NLS equation is
associated to the eigenvalue equation

l

3-2
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B̂F~t![S i
]

]t
u

2u* 2 i
]

]t

D S f (1)~t!

f (2)~t!
D 5zS f (1)~t!

f (2)~t!
D ,

~3.1!

whereu denotes a wave as a function oft at an arbitraryj.
It is known that the discrete eigenvaluesz j ( j 51, . . . ,N)
with the positive imaginary part@ Im(z j ).0# correspond to
solitons and are related to the soliton parameters (m j ,h j ) as

z j5m j /41 ih j /2. ~3.2!

Since the eigenfunctions of the discrete eigenvalues
bounded, we impose the fixed boundary conditions onf
space to calculate the discrete eigenvalues in the follow
calculations.

B. Numerical method

In order to obtain eigenvalues of Eq.~3.1! numerically,
we approximate the derivatives in Eq.~3.1! by the central
difference@17#:

2bfn21
(1) 1unfn

(2)1bfn11
(1) 5zfn

(1) ,

bfn21
(2) 2un* fn

(1)2bfn11
(2) 5zfn

(2) , ~3.3!

whereb5 i /(2Dt). We define a matrixB by

B5S � � � 0

0 0 un21 b

b un21* 0 0 2b

2b 0 0 un b

b un* 0 0

0 � � �

D , ~3.4!

and denote its eigenvector and eigenvalue byF
5( . . . ,fn21

(1) ,fn21
(2) ,fn

(1) ,fn
(2) , . . . )T and z, respectively.

Equation~3.1! is approximated by

BF5zF. ~3.5!

We note that it is shown below that there are fictitio
discrete eigenvalues of the matrixB with positive imaginary
part. It can be confirmed by substitution into Eq.~3.5! that
the following vector

F85@ . . . ,~21!nfn
(2)* ,~21!nfn

(1)* , . . . #T

is also eigenvector ofB for 2z* . However, since the se
quences$(21)nfn

(2)* % and $(21)nfn
(1)* % are not continu-

ous as functions ofn, this vector is not an approximant to th
correct solution of Eq.~3.1!. If the imaginary part of the
eigenvaluez is positive, then the imaginary part of the e
genvalue2z* is also positive, and there is fictitious eige
value2z* with positive imaginary part.
02660
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In Sec. IV, we calculate the eigenvalues of the matrixB
numerically and ignore these fictitious solutions, so as
obtain the parameters (m j ,h j ) of solitons.

IV. TRANSMITTED WAVES

A. Propagation through the inhomogeneous region

We integrated the vNLS equation, Eq.~2.3!, over j nu-
merically L54 ande51. We setDt<0.1 and the integra-
tion stepDj<0.001 so that the conserved quantitiesE1 and
E2 do not deviate from the values of the initial state. In Fig
2~a–c!, we show the amplitude of the waveuuu as a function
of t andj, in three different regions ofj.

FIG. 2. The spatiotemporal evolution of wavesuuu. t is dimen-
sionless delayed time andj is dimensionless distance of propag
tion. ~a! The propagation of the wave in homogeneous region be
the wave enters the inhomogeneous region,~b! in the inhomoge-
neous region, and~c! of the transmitted waves.~d! An exact
2-bound soliton of the NLS equation.
3-3
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Y. KUBOTA AND T. ODAGAKI PHYSICAL REVIEW E 68, 026603 ~2003!
Figure 2~a! shows the propagation of the incident solito
in the homogeneous region~region I in Fig. 1! j5@0,1#.
Since the incident soliton is the exact solution of Eq.~2.3! in
region I, it propagates without decay.

In the inhomogeneous region~region II in Fig. 1!, j
5@1,5#, the wave propagates with its amplitude decreas
and its width widening@see Fig. 2~b!#.

As can be seen from Fig. 2~c!, the transmitted waves
propagate with its shape varied in the homogeneous re
III for j.5. We calculated the parameters (m j ,h j ) of soli-
tons for the transmitted waves numerically using the met
described in Sec. III B. We found that the transmitted wa
contains two solitons, the velocities of which are 0, and
conclude that these solitons form a stationary 2-bound s
ton. The stationary 2-bound soliton with the same parame
are shown in Fig. 2~d! for comparison@18#.

B. e dependence

The properties of the transmitted waves were investiga
for various intensities of nonuniformitye keeping L54
fixed.

The maximum amplitude of the transmitted waves wh
have just passed through the inhomogeneous region is
fined by

u(amp)5max$uu~t!u%uj5j11L . ~4.1!

We call this value ‘‘transmitted amplitude’’ and plot it as
function of e in Fig. 3. It is seen from Fig. 3 that the tran
mitted amplitude decreases with the increase ofe.

The parameters (m j ,h j ) of the solitons contained in th
transmitted waves were calculated for variouse. We found
that all the velocitiesm j of the solitons are 0. The amplitud
h j of transmitted solitons are shown in Fig. 4. It can be se
from Fig. 4 that whene*0.8, the transmitted waves conta
a stationary 2-bound soliton.

Figure 5 shows thee dependence of the quantityE3 of the
transmitted waves, which is conserved in a homogene
region.E3 increases with the increase ofe. We denote the
soliton part ofE3 by E3

(so) , which can be represented wit
the soliton parameters as

FIG. 3. The transmitted amplitudeu(amp) (d) defined in Eq.
~4.1! as a function of the intensity of nonuniformitye. The dashed
curve denotes the transmitted amplitude given by Eq.~5.6! when
the inhomogeneous region is very long.
02660
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(so)5(

j 51

N
1

2
h jm j

22
2

3
h j

3 . ~4.2!

Since the parameters (m j ,h j ) of the solitons are constant i
a homogeneous region,E3

(so) is constant in region III. We
calculatedE3

(so) for the transmitted waves using the param
eters of the solitons shown in Fig. 4 and plot it in Fig. 5. T
difference betweenE3 and E3

(so) for large e indicates that
many nonsoliton waves emerge from the transmitted wav

C. L dependence

We obtained the transmitted waves for various lengthL
of the inhomogeneous region keeping the other param
fixed ate51.

The transmitted amplitudeu(amp) is shown as a function o
L in Fig. 6. WhenL50, there is no inhomogeneous regio
and the amplitude of the wave is the same as the one of
incident soliton. WhenL&2, the transmitted amplitude
u(amp) decreases rapidly with the increase ofL. When L
*2, the transmitted amplitudeu(amp) oscillates around an
asymptotic value and approaches it gradually with the
crease ofL.

FIG. 4. The amplitudeh j (d) of the solitons for the transmitted
waves are plotted as a function of the intensity of nonuniformitye.
The dashed curve denotes the soliton parameters given by
~5.8b! and ~5.9b! when the inhomogeneous region is very long.

FIG. 5. The valueE3 (d) of the transmitted waves given by Eq
~2.10!, and that value of the soliton part (s) of the transmitted
waves are plotted againste. The dashed curve denotes the solit
part ofE3 of the transmitted waves estimated in Sec. V for the lo
inhomogeneous region.
3-4
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The parameters (m j ,h j ) of the transmitted solitons wer
calculated for variousL. We plot those parameters (m j ,h j )
in Figs. 7~a! and 7~b!. It can be seen from these figures th
there are four different cases ofL. The transmitted waves
contain the following.

~1! A stationary single soliton,m j50.
~2! A stationary 2-bound soliton,m j50.
~3! A stationary single soliton and two solitons who

velocitiesm j are not 0. These nonzero velocity solitons mo
away from the origin oft axis and do not form a bound sta
soliton. We call these nonzero velocity solitons ‘‘scatter
solitons.’’

~4! A stationary 2-bound soliton and two scatter
solitons.

It can be seen from Fig. 7~b! that whenL&3.0, a station-
ary single soliton emerges from the transmitted waves@case
~1!#. Case~2! occurs when 3.5&L&14, and case~4! occurs
at L;15. When 16.0&L&24.0, case~3! takes place, and
cases~2!, ~4!, and ~3! take place in a sequential order wi

FIG. 6. The transmitted amplitudeu(amp) (d) defined in Eq.
~4.1! as a function of the lengthL of the inhomogeneous region
The dashed line denotes the transmitted amplitude given by
~5.6! when the inhomogeneous region is very long.

FIG. 7. The parameters (m j ,h j ) of the transmitted solitons ar
plotted for various lengthsL of the inhomogeneous region.~a! The
velocity m j of each soliton. The solid circle (d) corresponds to
m j50 and the open circle (s) corresponds tom jÞ0. ~b! The am-
plitudeh j of each soliton, the velocitym j of which is 0 (d) and is
not 0 (s). The dashed line denotes the soliton parameters give
Eq. ~5.8b! when the inhomogeneous region is very long.
02660
t

d

the increase ofL. It can also be seen from Fig. 7~b! that the
amplitudeh j of the scattered solitons are small compar
with that of the stationary solitons.

For example, fore51 andL520, the transmitted wave
contains three solitons, each parameters of which
(m j ,h j )5(0.0,0.7814) and (60.4136,0.0490), as is show
in Figs. 7~a! and 7~b!. Since each soliton velocitym j is dif-
ferent, there is no bound state soliton@case~3!#. The trans-
mitted wavesuuu are shown as a function oft andj in Fig.
8. At j521, i.e., the boundary between regions II and III, t
wave consists of a large peak pulse and broad tails. As
wave propagates, a set of small pulses emerge around
large pulse symmetrically@indicated by arrows in Fig. 8# and
move away in the opposite direction. We verified that the
small pulses are the scattered solitons by calculating the
locities of these small pulses on the (t,j) domain.

The quantityE3 can be represented as the sum of tw
contributions@19#:

E35E3
(so)1E3

(ns), ~4.3!

whereE3
(ns) is the nonsoliton wave part ofE3. In a homoge-

neous region, sinceE3 andE3
(so) are constants, this quantitie

E3
(ns) is also constant. These quantityE3 , E3

(so) , andE3
(ns) of

the transmitted waves for variousL are shown in Fig. 9. The

q.

y

FIG. 8. The spatiotemporal evolution of the transmitted wav
uuu. t is dimensionless delayed time andj is the dimensionless
distance of propagation. The length of the inhomogeneous re
and the intensity of nonuniformity areL520 ande51.0, respec-
tively. Small solitons are indicated by arrows.

FIG. 9. The valueE3 (d) of the transmitted waves given by Eq
~2.10!, the value of the soliton partE3

(so) (s) of the transmitted
waves, and the value of the nonsoliton wave partE3

(ns) (3) of the
transmitted waves are plotted againstL. The dashed line denotes th
soliton part ofE3 for the transmitted waves estimated in Sec. V f
the long inhomogeneous region.
3-5
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behavior ofE3 is similar to that ofE3
(so) , but E3 approaches

a different value.E3
(ns) approaches an asymptotic value ra

idly and oscillates with smaller amplitude than that ofE3 and
E3

(so) . It would be possible to measure the inhomogeneity
optical fibers by this quantityE3

(ns) .

D. 2-bound soliton

We identified the region in (t,j) domain where a 2-bound
soliton emerges, which is shown in Fig. 10. Here, for sho
ening the computational time, we use the method descr
in Appendix B to calculate the parameters of the transmit
solitons. As can be seen from this figure, a 2-bound sol
emerges from the transmitted waves only whene*0.6 andL
is an appropriate length. It can be seen from Fig. 10 that
e&1.0, the allowed region shrinks gradually with the i
crease ofL.

V. ANALYSIS FOR LONG INHOMOGENEOUS REGION

A. Asymptotic behavior

We treat an asymptotic case where the lengthL of the
inhomogeneous region~region II! is very long,L@1, and
estimate the profile of transmitted waves by using the a
lytical results of Satsuma and Yajima@10#. In Ref. @10#, it is
shown by the inverse scattering method that when a wav
represented asQ sechT on the NLS equation, the paramete
(m j ,h j ) of solitons contained in the waveQ sechT can be
calculated exactly, and the nonsoliton part of the wave
ymptotically decays asj21/2.

We consider the propagation of the solitons by dividing
into the three regions.

~1! The wave at the end of region I is given by

u5secht exp~ i j1!. ~5.1!

Since the phase factor of Eq.~5.1! can be absorbed into th
eigenfunction in Eq.~3.1!, the phase factor of Eq.~5.1! can
be ignored@20#, and for the same reason we ignore a ph
factor in u hereafter.

~2! In region II, the following transformation of variables

FIG. 10. Shaded areas denote the parametersL and e for the
cases where the 2-bound soliton emerge from the transm
waves. HereL denotes the length of the inhomogeneous region
e denotes the intensity of nonuniformity. These results are obta
by using the method described in Appendix B.
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C
u, Z5C2~j2j1!, T5t, ~5.2!

reduces the vNLS equation and Eq.~5.1! to

i
]U

]Z
1

]2U

]T2
12uUu2U50, ~5.3!

U5
1

C
sechT at Z50, ~5.4!

whereC is the constant given byC5A11«.
We apply the results in Ref.@10# to our model system.

When25/9<e,3, a single soliton emerges in region II. Th
nonsoliton waves disappear whenZ@1. On the assumption
that region II is sufficiently long,L@1, the nonsoliton waves
can be ignored, and there is only the single soliton at the
of region II, whereZ(5C2L)@1. The single soliton at the
end of region II is represented as

u5~22A11e! sechF S 2A 1

11e
21D tG . ~5.5!

The transmitted amplitudeu(amp) for very long region II is
given by

u(amp)
(L@1)522A11e. ~5.6!

~3! The NLS equation is invariant under the transform
tion of variables:

U85
1

C8
u, Z85C82j, T85C8t, ~5.7!

where C8 is an arbitrary constant. Here, we setC8
5(2/A11e)21, and the wave which enters region III
reduced toU85A11e sechT8.

We use the results in Ref.@10# again, then the parameter
of the transmitted soliton for25/9<e<5/4 are given by

m150, ~5.8a!

h15C8~2A11e21!, ~5.8b!

and when 5/4,e,3, a 2-bound soliton emerges in regio
III, the parameters of which are given by Eqs.~5.8!, and

m250, ~5.9a!

h25C8~2A11e23!. ~5.9b!

Note that Eq.~5.8b! is consistent with the relation derive
in Ref. @9#.

These quantities estimated forL@1 are compared with
the numerical results obtained in Sec. IV below.
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B. Comparison with the numerical results

1. e dependence

In Fig. 3, we compare the transmitted amplitudeu(amp)
(L@1)

for very long region II, i.e.,L@1, with the transmitted am
plitude u(amp) of the numerical results forL54. It can be
seen from this figure thatu(amp) andu(amp)

(L@1) are similar when
e!1, and show significant difference whene is large.

The parameters (m j ,h j ) of the transmitted solitons fo
L@1 are shown in Fig. 4. In this case, the 2-bound soli
emerges fore.5/4. It should be noticed that this critica
value ofe is different from the one obtained in the numeric
calculation in Sec. IV B, due to difference of the lengthL of
region II. This difference of the critical value ofe will be
discussed in Sec. VI B.

2. L dependence

The transmitted amplitudeu(amp)
(L@1) for L@1 is compared

with the numerical resultsu(amp) for e51 in Fig. 6. It is
shown in this figure that the transmitted amplitudeu(amp)

oscillates around the asymptotic valueu(amp)
(L@1) and ap-

proaches it withL.
It is shown in Sec. V A that whenL@1 and e51, the

transmitted soliton is a stationary single soliton, and
show the amplitudeh1 of its soliton in Fig. 7~b!. It can,
however, be seen from the numerical results in this fig
that a stationary 2-bound soliton emerges in region III
some limited values ofL. Figure 7~b! shows that with in-
crease inL, the larger amplitudeh j of the soliton gradually
approaches the asymptotic value with oscillation, and
smaller amplitudeh j of the soliton emerges and disappea
repeatedly and gradually decay with a much slower rate

The asymptotic value ofE3
(so) estimated forL@1 is ob-

tained by using Eqs.~5.8! and~4.2!, and is shown in Fig. 9.
It can be seen from this figure thatE3

(so) decays to the
asymptotic value with oscillation.

VI. DISCUSSION

A. Development into the asymptotic soliton

Whene is small,ueu!1, the evolution of the wave in the
inhomogeneous region~region II! has been investigated b
the dispersive perturbation@21# and the variational techniqu
@22#. Here, we consider how the incident wave develops i
the single soliton in region II intuitively.

The amplitude of the wave at an appropriate pointj2 in
region II is given byu(amp) for shorter region II, whereL
5j22j1, and the dependence ofu(amp) on L are shown in
Fig. 6. In region II, the amplitude of the wave oscillat
around the asymptotic valueu(amp)

(L@1) and approaches it as th
wave propagates.

Roughly speaking, these phenomena are interprete
follows: In region I, the incident soliton propagates witho
decay, and this fact indicates that contributions of the der
tive term and the nonlinear term in the vNLS equation@Eq.
~2.3!# to the incident soliton are balanced. When the wa
enters region II, the derivative term and the nonlinear term
the vNLS equation are off balanced, and the wave is i
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nonstationary state since the coefficienta(j) in the vNLS
equation is larger in region II than the one in region I. T
wave evolves into the soliton asymptotically, and this ph
nomenon can be considered as the wave converging
stationary state. Therefore, the values of the derivative t
and the nonlinear term in the vNLS equation vary as
wave propagates so as to be balanced. Since the wave
satisfy the conservation law@Eq. ~2.8!#, the amplitude of the
wave decreases so that the wave becomes wider
smoother@see Fig. 2~b!#. However, the amplitude of the
wave overdamps beyond the asymptotic amplitude since
effect of the nonlinear term is strengthened by the existe
of the nonsoliton wave, and then the wave approaches
asymptotic form again. The amplitude of the wave beha
like a damped oscillator with the distance of the propagat
in region II.

B. 2-bound soliton

In Secs. IV and V, we have seen that a 2-bound soli
emerges from the transmitted waves for some limited val
of the fiber parameters. It can be assumed from those re
that a 2-bound soliton is contained in a wave when the w
has entered a region wherea(j) is smaller than the one o
the preceding region. Here, we consider the condition for
emergence of a 2-bound soliton from a wave and ensure
above assumption.

We consider two successive regions. In a regionA, a(j)
5a1, and in a regionB, a(j)5a2(Þa1), wherea1 anda2
are arbitrary positive constants. We assume that regionA is
long enough so that a waveu develops into a stationary
soliton near the end of regionA. It can be calculated by using
Eq. ~2.5! and Eqs.~5.2! where we setC5Aa1 that the single
soliton at the end of regionA can be represented by

u5Aa1h sech~ht!, ~6.1!

where h is an appropriate positive constant. Since the
jected wave in regionB is of hyperbolic secant shape, it i
well known @3# that the number of the solitons~N! can be
obtained by

N25guAu2T0
2/ub2u. ~6.2!

In this case, the number of the solitons is given byN
5Aa1 /a2 @cf. Eqs.~2.1! and ~2.2!#. We conclude that when
region A is sufficiently long, the number of the solitons i
region B is determined by the ratio of valuea(j) in each
region and a bound state soliton emerges in regionB when
a2 is sufficiently smaller thana1.

It is shown in Sec. V A that the estimation for a very lon
inhomogeneous region indicates that a 2-bound sol
emerges from the transmitted waves fore.5/4. It should be
noticed that for finite lengthL, a 2-bound soliton can emerg
even whene<5/4 and the critical value also depends onL
~see Fig. 10!. It can be seen from Figs. 6 and 7~b! that a
2-bound soliton emerges from the transmitted waves w
u(amp) is small.

These facts are interpreted as follows. We consider
fibers ~named fiberFI and fiber FII ) under consideration
3-7
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with different lengths of the inhomogeneous region,L1 and
L2(.L1), but with the same valuee of the inhomogeneity.
We denote the wave at the right edge of the inhomogene
region by f 1(t) and f 2(t), respectively, and the ratio of th
amplitude of f 1(t) and f 2(t) by R5max@f2(t)#/max@f1(t)#.
We assumeR,1 ~or R.1). We note that the wavef 1(t) is
given by the wave atj5j11L1 in the inhomogeneous re
gion of fiber FII . When a wave propagates in the inhom
geneous region of fiberFII , the wave is varied gradually
with the distance of the transmission,j. We now assume tha
f 2(t) is given by the same function asf 1(t) with an appro-
priate scaling of the amplitude and the width. Since the w
must satisfy the conservation law@Eq. ~2.8!#, the wavef 2(t)
can be represented as

f 2~t!5R f1~R2t!. ~6.3!

It has been explained in Sec. III A that the number of t
solitons contained in the wavef 2(t) is calculated by substi
tuting Eq.~6.3! into u in Eq. ~3.1!. It can be shown from Eq
~3.1! and Eqs.~5.7! with C85R2 that the number of solitons
contained inf 2(t) is the same one which are calculated f
u5(1/R) f 1(t). We conclude that when the transmitted a
plitude of the wavef 2(t) is R times smaller~or larger! than
the one of the wavef 1(t), the height of the potentialu in Eq.
~3.1! is effectively 1/R times higher~or lower! than that of
f 1(t). The transmitted wave with the smaller amplitu
might have a bound state soliton.

VII. EXACTLY SOLVABLE CASE

We set the parameter for the intensity of nonuniformit

e52S 12
1

n2D , ~7.1!

wheren is a positive integer, so that Eq.~5.4! is reduced to
U5n sechT. In this case, no nonsoliton waves emerge in
inhomogeneous region, and the incident wave propagate
an exact soliton in the inhomogeneous region@10#. Whenn
is larger than 1, the wave is the exactn-bound soliton and its
envelope pulsates periodically with the frequencyp/@4(1
1e)# along with the propagation@20#. Since the incident
soliton revives its shape periodically, the transmitted wav
the same as the incident one when the length of the inho
geneous region is

L5
p

4~11e!
m, ~7.2!

wherem is a positive integer, and it propagates as an ex
single soliton in the homogeneous region III.

Thus, the incident soliton propagates as exact soliton
the entire fiber by setting the fiber parameters as Eqs.~7.1!
and ~7.2!.

VIII. SUMMARY AND CONCLUSION

We have investigated numerically the propagation of s
tons in the optical fiber with an inhomogeneous region.
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summarize the profile of the transmitted waves as follows
is found that whene is small, the profile of the transmitte
wave is well approximated by the asymptotic form in t
limit of long region. With the increase ofe, the property of
the transmitted waves deviates from the one of the incid
soliton. For largee, the transmitted waves contain a 2-bou
soliton.

We have obtained the nonsoliton wave contributionE3
(ns)

to the quantityE3. We have found thatE3
(ns) approaches an

asymptotic value rapidly with the increase ofL, and it would
be possible to measure the inhomogeneity of optical fibers
this quantityE3

(ns) .
The small solitons with nonzero velocity~scattered soli-

tons! emerge from the transmitted waves for some limit
values of the fiber parameters. It may be necessary to c
sider the emergence of those scattered solitons in some
plications of the soliton.

It is shown by the asymptotic estimation forL@1 that the
2-bound soliton emerges from the transmitted waves w
e.5/4. It is interesting to note that for some limited valu
of finite lengths of inhomogeneous regions, a 2-bound s
ton emerges even fore<5/4. This fact indicates that we ca
generate a 2-bound soliton by controlling the length of
inhomogeneous region for smallere.

We have considered the condition for generating
2-bound soliton when a wave has passed through a boun
of two successive regions. When the first region is su
ciently long, the number of the solitons in the second reg
is determined by the ratio of the coefficientsa(j) of the
vNLS equation in both regions. When the first region is n
long enough for the wave to converge to the asympto
form, the wave at the end of the first region depends on b
the intensity ofa(j) and the length of the first region. W
have concluded that the wave contains many solitons in s
sequent region when the amplitude of the wave is smal
the end of the first region.
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APPENDIX A: RENORMALIZATION OF THE INCIDENT
SOLITON PARAMETERS

In this appendix we explain the reason that the parame
of the incident soliton can be set asm50 andh51, without
loss of generality. When the parameters of the incident s
ton are set asm5m0 andh5h0, wherem0 andh0 are arbi-
trary constants, we use the following transformation of va
ables:

u85
1

h0
u expF i

m0

2
t1 i

m0
2

4 E
0

j

a~j9!dj9G , ~A1a!

t85h0t1m0h0E
0

j

a~j9!dj9, ~A1b!
3-8
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j85h0
2j. ~A1c!

Then, the incident soliton is reduced to the soliton with p
rametersm50 andh51.

However, the transformation of variables changes
scale of the length, and then lengthL of the inhomogeneous
region is varied. This variation ofL can be absorbed in theL
dependence of the transmission profile.

Therefore, assuming that the parameters (m,h) of the in-
cident soliton are chosen arbitrary constants, these case
be reduced to the case where the incident soliton param
arem50 andh51.

APPENDIX B: AN ALTERNATE METHOD
FOR NUMERICAL CALCULATION

We introduce an alternate method to calculate numeric
the discrete eigenvalues of the matrixB defined in Eq.~3.4!,
which coincide with the parameters of solitons~see in Sec.
III !. We can calculate only the parameters of stationary s
tons ~velocity m j is 0! by this method; however, we can g
results fast with less memory compared with calculating
eigenvalues ofB directly.

In general, the secular equation

det~B2lE!50 ~B1!

is accurate ifl is an eigenvalue of the matrixB, whereE
denotes an unit matrix. In our model system, when we c
et

-
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culate the parameters of the stationary soliton, we search
the eigenvalues ofB only in @0,i # on the imaginary axis by
the following three reasons.

~1! Since the eigenvalues which correspond to solito
have positive imaginary parts, we search for eigenval
only in the upper half plane Im(l).0.

~2! The energy@Eq. ~2.8!# can be rewritten as

E15(
j 51

N

2h j1E1
(ns), ~B2!

whereE1
(ns) is the energy of nonsoliton waves@11,20#. The

energy is a positive constantE152 @see Sec. II# throughout
the calculation. The amplitudeh j of solitons is positive. It
can be seen from Eq.~2.8! that E1

(ns) is non-negative. There
fore, each term in Eq.~B2! is non-negative; and it is found
that the amplitudeh j of solitons, which is derived from the
incident soliton, is less than or equal to 1. Since the am
tude h j of the soliton is the imaginary part of the discre
eigenvalue@see Eq.~3.2!#, we search for the discrete eigen
values in Im(l)<1.

~3! The velocity of stationary soliton ism j50, and the
velocity m j of the soliton is the real part of eigenvalue@see
Eq. ~3.2!#. We search eigenvalues only in the imaginary a
on the complexl plane.

Therefore, we can concentrate in det(B2lE) changingl
in @0,i # on the imaginary axis to calculate the parameters
the stationary solitons.
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