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Numerical study of soliton scattering in inhomogeneous optical fibers
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Using a variable-coefficient nonlinear ScHinger equation, transmission profile of a single soliton in the
optical fiber with an inhomogeneous region is studied numerically. It is found that the transmitted wave
contains two solitons which form a bound state when the difference of the dispersion coefficient between the
inhomogeneous and the homogeneous regions is large enough. When the amplitude of the transmitted wave is
small, the transmitted wave is apt to contain a bound state soliton. With the increase of the length of the
inhomogeneous region, a quantiy, which is the conserved quantity of the constant-coefficient nonlinear
Schralinger equation, for the transmitted wave converges to an asymptotic value with oscillation. It is found
that the nonsoliton wave part &j; for the transmitted wave converges to an asymptotic value rapidly com-
pared with other contributions tB;. We find the condition for the parameters of the inhomogeneous region
that a stable soliton can exist on the entire fiber.
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[. INTRODUCTION the behavior of transmitted waves, and it is found that the
transmitted waves contain several solitons, some of which
It is well known that optical fibers can support solitons onform a bound state. We clarify the condition for the transmit-
a balance of nonlinear effects and group velocity dispersiofed waves to possess a bound state soliton. Note that Ander-
in anomalous dispersion regime. This fact was first predictegonet al.[9] studied soliton tunneling using a similar model
by Hasegawa and Tappétt] and was demonstrated experi- {0 improve a §|ngle—sol|ton compression by a fiber, the dis-
mentally by Mollenaueret al. [2]. Since then, the soliton Persion of which changes stepwise.
propagation in optical fibers has been widely studied from The present paper is organized as follows. The model is
the interest of fundamental aspects and the potential for agotroduced in Sec. II. In Sec. lll, we explain the numerical
plication to optical communicatiof3]. The propagation of method to calcu]ate the parameters of solitong which emerge
solitons in optical fibers have been investigated theoreticalljrom the transmitted waves. In Sec. IV, numerical results are
using the nonlinear Schdinger (NLS) equation. shown when a single soliton is injected into an inhomoge-
In realistic optical fibers, characteristic parameters of the1€ous region of finite length. We investigate the dependence
fiber are not constant but can depend on the location in thef the transmitted wave profile on the length of the inhomo-
optical fiber. In other words, these parameters can hav@eneous region and the intensity of nonuniformity. In Sec. V,
space-coordinate dependence. For example, the variations We estimate the pulse shape of the transmitted waves for a
the group velocity dispersion and the nonlinear coefficienivery long inhomogeneous region by applying the results of
are described by the variable-coefficient NOBILS) equa-  Satsuma and Yajimpl0] and compare this estimation with
tion. In these optical fibers, the incident soliton is modulatedthe results of the numerical calculation. Section VI is de-
and is scattered by the inhomogeneity. Some properties gfoted to the discussion. Finally, in Sec. VII, we show that
the VNLS equation have been studiet-8]. When the co- when the parameters of the optical fiber satisfy a certain
efficients of the VNLS equation satisfy a constraint, the equacondition, continuous waves do not emerge from the incident
tion possesses the Painiepmperty[4’5], which relates to Single soliton in the entire ﬁber, and the transmitted wave can
the integrability of the equation. Tian and GE&J found an ~ Propagate as a single soliton.
auto-Bazklund transformation and some special solutions to
the VNLS equation, when its variable coefficients have a spe- Il. MODEL
cial relation. The modulational instability of the continuous : . . . . .
wave in optical fibers was investigated and it was shown that We consider light pu_lses,_ which are linearly polar_lzed, n
the unstable spectral width is widened by random coefficienf"! mhomogeneous optical fiber an_d study the evolutlon of its
[7]. Grimshaw([8] used a multiple-scale method and con- electric-field envelopd\. The evolution of the envelopk is
structed a soliton like solution for the VNLS equation varying governed3] by
slowly with the propagation.
In this paper, we consider the propagation of solitons in '%Hi%— Eﬂ (Z)aZ_A+ y|A[2A=0 2.1)
the optical fiber, where the group velocity dispersion has gz vgdt 2 250 2 ' '
space-coordinate dependence. Considering a simple model,
we investigate numerically the scattering of a single solitorwherezis the distance of transmission along the filvés,the
due to an inhomogeneous region. This model will give somdime, v is the group velocity of the light pulses, is the
basic principles in the study of the soliton transmission, andyroup velocity dispersion coefficient, andis the nonlinear
the results of this model can be applied to more complicategoefficient which is inversely proportional to the effective
situations. The main objective of this study is to investigatecore area. Coefficiens, is a real function ofz. We restrict
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FIG. 1. The perspective of an incident soliton on the optical

fiber with an inhomogeneous regigmamed region )i, the length of
which isL. Regions | and Il are homogeneous regions. The NLS equation has an infinite set of constants of mo-
tion [11], among which the following three are well-known
ourselves to anomalous dispersion regif3e<0, so that the constants of motion:
optical fiber can support bright solitons.
We introduce dimensionless variables defined by

> N E1=f luldr, (2.8
T 1
FERAALINR r==(t=2vy), (22
| 82| 2Th 0 .
where T, is the width of the incident pulse ang, is the EZ:[ Imj u T dr, 2.9

group velocity dispersion coefficient of an ideal optical fiber
which has no fluctuation. Here is the dimensionless de-

layed time. Under transformatiai2.2), the equation of mo- E :J' ( ‘9_U 2—|u|4)dr 2.10
tion (2.1) is reduced to the vNLS equation s aT ' '
du Ju . . .
i— +a(é)— +2|ul?u=0, (2.3  where the asterisk denotes complex conjugate. In the optical
JI€ a7 fiber under study, the constants of motidt, and E,, rep-
_ resent the energy and the mean frequency weighted by the
wherea(&) = — B,(2)/|B2|. intensity of optical pulses, respectively.
We consider optical fibers, a part of which has an elevated The quantities€; andE, are also conserved in the VNLS
value of the group velocity dispersigs,. We set equation[8], and this can be proved by following the proce-

dure of Pathria and Morri§l5] for our model. Therefore,
2.4 when discretization is used, the steps should be chosen so
' thatE; andE, stay constant. These constants are determined
by the incident wave and are given By=2, E,=0 in our
wheree is interpreted as the intensity of nonuniformityjs  paper.
the dimensionless length of the inhomogeneous region scaled On the other hand; is not conserved in the VNLS equa-
by 2T3/|3,|. Since¢; does not affect the results in our cal- tion. Note that, in the conventional NLS equation where the
culation, we set;=1 in the following calculation without time and the space coordinates are interchangeds cor-

1 for é<é, andé;+L<¢

al$)= 1+e for &<é<é+L,

loss of generality. responds to the NLS Hamiltonian. We calculate this quantity
The NLS equation with a constant coefficieat)=1in ~ Es for various parameters in later sections to quantify the
Eq. (2.3), supports a single-soliton solution given by effects of the inhomogeneity.

u(é,mm,m)=mnsechn(r+ué)]

X exp{ —i gr— i
Generally, a solutioru to Eg. (2.3) consists of several

where u and » are arbitrary real parameters of the soliton solitons and dispersive wave continua. We denote the num-
and represent the velocity and the amplitude, respectivelper of the solitons by\. Each soliton is characterized by two
[11]. parametersu; and 7; (j=1,... N). The solitons move

At the left end of the fiberf=0, we prepare a single with its characteristic velocityt; on the (r,¢) domain and
soliton as the incident wavi=ig. 1). Without loss of gener- the nonsoliton waves spread away as they propagate. Some
ality we can set the parameters of the incident solitan, solitons may have zero velocity;=0, and we call these
=0 and »=1 (see Appendix A We integrate numerically solitons “stationary solitons.” If some of the velocitigs;
Eqg. (2.3 over ¢ using the second-order split-step Fourier[e.g., j=1,...m(<N)] are the same, these solitons can
method[3,12-14 imposing periodic boundary condition in form a bound state, and it is called threbound solitor{11].
7. Since we prepare sufficiently large spaceradnd finish We use a method to calculate the parametgrs, f;) of
the numerical calculation before waves reach the boundary ithe solitons which emerge from a waueAccording to the
7, the boundary condition does not affect the resultséAt inverse scattering method0,11,16, the NLS equation is
=¢, andé= ¢, +L, the conditions are imposed. associated to the eigenvalue equation

) IIl. THE NUMBER OF SOLITONS

%—nz)é

, (25 A. Inverse scattering method
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whereu denotes a wave as a function ofat an arbitraryé. @

It is known that the discrete eigenvalués (j=1, ... N)
with the positive imaginary paftim({;)>0] correspond to w1
solitons and are related to the soliton parametgrss ;) as 08
= pilA+inl2. (3.2 06
0.4
Since the eigenfunctions of the discrete eigenvalues are 0.2
bounded, we impose the fixed boundary conditionsdon 0

space to calculate the discrete eigenvalues in the following
calculations.

B. Numerical method lu| 1
In order to obtain eigenvalues of E€B.1) numerically, 08
we approximate the derivatives in E(R.1) by the central 06
difference[17]: 04
0.2
—bl + U+ bl = Ll 0
b —uj Vb= 42, (33 “
whereb=i/(2A 7). We define a matriB by 1
0 0.8
0.6
0 0 un-1 b 0.4

B= )
b 0 o0 wu bl G 0

(=
3 JCX-
o
o

FIG. 2. The spatiotemporal evolution of waes.  is dimen-
and denote its eigenvector and eigenvalue Ky  sionless delayed time arglis dimensionless distance of propaga-

=(... ,¢§]131,¢E12,)1,¢$11),¢§12), ...)T and £, respectively. tion.(a) The propagation of the wave in homogeneous region before
Equation(3.1) is approximated by the wave enters the inhomogeneous regitm,in the inhomoge-
neous region, andc) of the transmitted waves(d) An exact
BO=/D. (3.5 2-bound soliton of the NLS equation.

We note that it is shown below that there are fictitious In Sec. |V' we calculate the eigenva'ues of the maBix

discrete eigenvalues of the matixwith positive imaginary  numerically and ignore these fictitious solutions, so as to

part. It can be confirmed by substitution into B8.5 that  gptain the parametersu , ;) of solitons.
the following vector

D'=[ ... (~D)"P* (—D)"pV*, T IV. TRANSMITTED WAVES
is also eigenvector oB for —¢*. However, since the se- A. Propagation through the inhomogeneous region
quences|(—1)"¢{?*} and {(—1)"¢{V*} are not continu- We integrated the VNLS equation, E.3), over & nu-

ous as functions af, this vector is not an approximant to the mericallyL=4 ande=1. We setA r<0.1 and the integra-
correct solution of Eq(3.1). If the imaginary part of the tion stepA£<0.001 so that the conserved quantitiesand
eigenvalue{ is positive, then the imaginary part of the ei- E, do not deviate from the values of the initial state. In Figs.
genvalue— * is also positive, and there is fictitious eigen- 2(a—g, we show the amplitude of the waye| as a function
value — ¢* with positive imaginary part. of 7 and¢, in three different regions of.
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FIG. 3. The transmitted amplitude,m, (®) defined in Eq. FIG. 4. The amplitudey; (®) of the solitons for the transmitted

(4.2) as a function of the intensity of nonuniformity The dashed waves are plotted as a function of the intensity of nonuniforraity
curve denotes the transmitted amplitude given by &¢) when  The dashed curve denotes the soliton parameters given by Egs.

the inhomogeneous region is very long. (5.8b and(5.9b when the inhomogeneous region is very long.
Figure 2a) shows the propagation of the incident soliton N1 2
in the homogeneous regiofmegion | in Fig. 3 ¢é=[0,1]. Eé”’zz,l 5?7]#,-2—5771-3- (4.2)

Since the incident soliton is the exact solution of E33) in
region |, it propagates without decay.

In the inhomogeneous regiofregion Il in Fig. ), ¢  Since the parameterg.(, 7;) of the solitons are constant in
=[1,5], the wave propagates with its amplitude decreasinga homogeneous regiof$® is constant in region IIl. We
and its width wideningsee Fig. 2b)]. calculatede$® for the transmitted waves using the param-

As can be seen from Fig.(@, the transmitted waves eters of the solitons shown in Fig. 4 and plot it in Fig. 5. The
propagate with its shape varied in the homogeneous regiogitrerence betweerE, and E(3so) for large e indicates that

Il for £>5. We calculated the parameters; ( 7;) of soli-  many nonsoliton waves emerge from the transmitted waves.
tons for the transmitted waves numerically using the method

described in Sec. Ill B. We found that the transmitted wave
contains two solitons, the velocities of which are 0, and we C. L dependence

conclude that these solitons form a stationary 2-bound soli- \ve obtained the transmitted waves for various lengths
ton. The stationary 2-bound soliton with the same parameters; the innomogeneous region keeping the other parameter

are shown in Fig. @) for comparisor{18]. fixed ate=1.
The transmitted amplitude ) is shown as a function of
B. € dependence L in Fig. 6. WhenL =0, there is no inhomogeneous region,

The properties of the transmitted waves were investigate@nd the amplitude of the wave is the same as the one of the
for various intensities of nonuniformit}&- keeping L=4 incident soliton. WhenLSZ, the -transmlttEd amplltude
fixed. Ucamp) decreases rapidly with the increase laf When L

The maximum amplitude of the transmitted waves which=2, the transmitted amplitudg ,mg) oscillates around an

have just passed through the inhomogeneous region is d@symptotic value and approaches it gradually with the in-
fined by crease ol.

Uampy=Max[u(7)[}H =g +L - (4.2

We call this value “transmitted amplitude” and plot it as a ok DA
function of € in Fig. 3. It is seen from Fig. 3 that the trans- I o* S ,65;,'5,oooo°oooo.
mitted amplitude decreases with the increase.of S . ngo

The parametersy;, n;) of the solitons contained in the : o0
transmitted waves were calculated for variauswWe found P g0
that all the velocitiesu; of the solitons are 0. The amplitude -05r &~
»; of transmitted solitons are shown in Fig. 4. It can be seen [ &
from Fig. 4 that where=0.8, the transmitted waves contain 0 1 5 3
a stationary 2-bound soliton. £

Figure 5 shows the dependence of the quantif, of the FIG. 5. The valu&; (®) of the transmitted waves given by Eq.
transmitted waves, which is conserved in a homogeneoug 10, and that value of the soliton par) of the transmitted
region. E; increases with the increase ef We denote the waves are plotted against The dashed curve denotes the soliton

soliton part ofE5 by ES®, which can be represented with part of E, of the transmitted waves estimated in Sec. V for the long
the soliton parameters as inhomogeneous region.
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0y 20 40 . 60 80 100 FIG. 8. The spatiotemporal evolution of the transmitted waves
L |u]. 7 is dimensionless delayed time agdis the dimensionless
FIG. 6. The transmitted amplitude s, (®) defined in Eq. distance_of pr(?pagation. The Ie_ngth of the inhomogeneous region
(4.1) as a function of the length of the inhomogeneous region. a}ndl thg |ntﬁn5|lty of nonqngprmlt)é gr‘e=20 ande=1.0, respec-
The dashed line denotes the transmitted amplitude given by Ec}'.ve y. Small solitons are indicated by arrows.
(5.6) when the inhomogeneous region is very long. ) )
the increase oL. It can also be seen from Fig(j that the
The parametersy; ,7;) of the transmitted solitons were ar_nplitude n; of the_scattered_ solitons are small compared
calculated for various. We plot those parameters.(, 7;) with that of the stationary SO"K_)”S' .
in Figs. 7@ and 7b). It can be seen from these figures that FOF €xample, fore=1 andL =20, the transmitted wave
there are four different cases &f The transmitted waves contains three solitons, each parameters of which are

contain the following. (mj,7;)=(0.0,0.7814) and £0.4136,0.0490), as is shown
(1) A stationary single solitonw;=0. in Figs. 1a) and 1b). Since each soliton velocity; is dif-
(2) A stationary 2-bound solito;y,e:o ferent, there is no bound state solitpoase(3)]. The trans-
i=0.

(3) A stationary single soliton and two solitons whose mittedxvave_iu| are shown as a function efand¢ in Fig.
velocitiesu; are not 0. These nonzero velocity solitons move8: ALé=21, 1.€., the boundary between regions Il and I, the
away from the origin of- axis and do not form a bound state WaVve consists of a large peak pulse and broad tails. As the
soliton. We call these nonzero velocity solitons “scatteredV@ve Propagates, a set of small pulses emerge around the

solitons.” large pulse symmetricallyindicated by arrows in Fig.]gand
(4) A stationary 2-bound soliton and two scatteredMOVE away in the opposite directi_on. We verified 'Fhat these
solitons. small pulses are the scattered solitons by calculating the ve-
It can be seen from Fig.(B) that whenL<3.0, a station- 'Ocities of these small pulses on the, §) domain.
ary single soliton emerges from the transmitted wevese The quantityE; can be represented as the sum of two

(1)]. Case(2) occurs when 35L=<14, and caséd) occurs ~ contributions[19]:
at L~15. When 16.6L<24.0, case3) takes place, and

_ (so)+ (ns)
cases(2), (4), and(3) take place in a sequential order with Es=Ey7+EsT, “.3

whereE{" is the nonsoliton wave part d&;. In a homoge-
neous region, sincé; and E(gso) are constants, this quantities
E{™ is also constant. These quantify, ES?, andE{™ of

G the transmitted waves for variolisare shown in Fig. 9. The
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FIG. 7. The parametersu{,»;) of the transmitted solitons are
plotted for various lengthk of the inhomogeneous regiota The FIG. 9. The valu€; (@) of the transmitted waves given by Eq.
velocity u; of each soliton. The solid circle®) corresponds to  (2.10, the value of the soliton parE(35°) (O) of the transmitted
;=0 and the open circle() corresponds te;#0. (b) The am-  waves, and the value of the nonsoliton wave ;Eif‘ﬁ) (X) of the
plitude 7; of each soliton, the velocity; of which is 0 @) andis  transmitted waves are plotted agaibsThe dashed line denotes the
not 0 (O). The dashed line denotes the soliton parameters given bgoliton part ofE; for the transmitted waves estimated in Sec. V for
Eq. (5.8H when the inhomogeneous region is very long. the long inhomogeneous region.
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s ' ' 1
\ U=Eu, Z=C%(&—¢)), T=r, (5.2

reduces the VNLS equation and E§.1) to

2

‘aU+5U+2|u|2u 0 (5.3
] |— —_— = y .
y% aZ - HT?

. . . 1
L % 60 U:EsechT at Z=0, (5.9

—_

K

%

FIG. 10. Shaded areas denote the paramétemsd e for the
cases where the 2-bound soliton emerge from the transmittehereC is the constant given b =\1+e.
waves. Herd denotes the length of the inhomogeneous region and We apply the results in Refl10] to our model system.
€ denotes the intensity of nonuniformity. These results are obtainedfVhen —5/9< €< 3, a single soliton emerges in region Il. The
by using the method described in Appendix B. nonsoliton waves disappear whge-1. On the assumption
that region Il is sufficiently longl.>1, the nonsoliton waves
can be ignored, and there is only the single soliton at the end
of region Il, whereZ(=C?L)>1. The single soliton at the
end of region 1l is represented as

behavior ofEj is similar to that ofES®, but E; approaches

a different vaIueEg‘S) approaches an asymptotic value rap-
idly and oscillates with smaller amplitude than tha&afand

E(35°). It would be possible to measure the inhomogeneity of 1
optical fibers by this quantitE{"). u=(2—1+e) sec?{i ( 24/ Toe 1) 7.

D. 2-bound soliton

We identified the region in4, &) domain where a 2-bound 1N€ transmitted amplitud@amp) for very long region Il is
soliton emerges, which is shown in Fig. 10. Here, for short-9iven by
ening the computational time, we use the method described

(5.9

in Appendix B to calculate the parameters of the transmitted UEéipl)’=2— Vite. (5.6
solitons. As can be seen from this figure, a 2-bound soliton
emerges from the transmitted waves only wlen0.6 andL (3) The NLS equation is invariant under the transforma-
is an appropriate length. It can be seen from Fig. 10 that fotion of variables:
€<1.0, the allowed region shrinks gradually with the in-
crease ol. 1
u':Eu, Z2'=C'%¢, T'=C'r, (5.7
V. ANALYSIS FOR LONG INHOMOGENEOUS REGION
A. Asymptotic behavior where C’' is an arbitrary constant. Here, we s’
We treat an asymptotic case where the lengtbf the = (2/V1+€)—1, and the wave which enters region Il is

inhomogeneous regiofregion 1) is very long,L>1, and reduced taJ’=y1+esechr’. _

estimate the profile of transmitted waves by using the ana- We use the results in R€f10] again, then the parameters
lytical results of Satsuma and Yajinia0]. In Ref.[10], itis  ©f the transmitted soliton for-5/9< e<5/4 are given by
shown by the inverse scattering method that when a wave is

represented a@ sechTl on the NLS equation, the parameters #1=0, (5.83
(mj,m;) of solitons contained in the wav@ sechT can be
calculated exactly, and the nonsoliton part of the wave as- 7,=C'(2{1+e—1), (5.8b

ymptotically decays ag~ %2
We consider the propagation of the solitons by dividing itand when 5/4 e<3, a 2-bound soliton emerges in region

into the three regions. ll, the parameters of which are given by E@S.8), and
(1) The wave at the end of region | is given by

u=sechrexp(i£,). (5. #2=0, (5.93
7,=C'(2\1+€e-3). (5.9b
Since the phase factor of E(b.1) can be absorbed into the
eigenfunction in Eq(3.1), the phase factor of E¢5.1) can Note that Eq(5.8b) is consistent with the relation derived
be ignored 20], and for the same reason we ignore a phasén Ref.[9].
factor inu hereafter. These quantities estimated fae>1 are compared with

(2) In region I, the following transformation of variables: the numerical results obtained in Sec. IV below.
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B. Comparison with the numerical results nonstationary state since the coefficiaft) in the VNLS
equation is larger in region Il than the one in region |. The
wave evolves into the soliton asymptotically, and this phe-

In Fig. 3, we compare the transmitted amplituﬂféipl)) nomenon can be considered as the wave converging to a

for very long region I, i.e.L.>1, with the transmitted am- stationary state. Therefore, the values of the derivative term

plitude Ugampy Of the numerical results fot=4. It can be and the nonlinear term in the VNLS equation vary as the
seen from this figure that ,y,,) and ugg;i;; are similar when wave propagates so as to be balanced. Since the wave must
e<1, and show significant difference wheris large. satisfy the conservation lajg. (2.8)], the amplitude of the

The parametersy;,»;) of the transmitted solitons for wave decreases so that the wave becomes wider and

L>1 are shown in Fig. 4. In this case, the 2-bound solitonsmoother[see Fig. 2b)]. However, the amplitude of the

emerges fore>5/4. It should be noticed that this critical wave overdamps beyond the asymptotic amplitude since the

value ofe is different from the one obtained in the numerical effect of the nonlinear term is strengthened by the existence
calculation in Sec. IV B, due to difference of the lengtiof ~ of the nonsoliton wave, and then the wave approaches the

region Il. This difference of the critical value af will be ~ asymptotic form again. The amplitude of the wave behaves
discussed in Sec. VI B. like a damped oscillator with the distance of the propagation

in region 1.

1. € dependence

2. L dependence

The transmitted amplituda!:>Y for L>1 is compared
(amp)

with the numerical resultsiamp) for e=1 in Fig. 6. It is In Secs. IV and V, we have seen that a 2-bound soliton
shown in this figure that the transmitted amplitudg,,y  emerges from the transmitted waves for some limited values
oscillates around the asymptotic vaIuéLM) and ap- of the fiber parameters. It can be assumed from those results

amp) . . . ;
proaches it with_. that a 2-bound soliton is contained in a wave when the wave

It is shown in Sec. V A that wheh>1 ande=1, the has entered a region whea€é) is smaller than the one of
transmitted soliton is a stationary single soliton, and wethe preceding region. Here, we consider the condition for the
show the amplitudey, of its soliton in Fig. Tb). It can, emergence of a 2-bound soliton from a wave and ensure the
however, be seen from the numerical results in this figurédbove assumption.
that a stationary 2-bound soliton emerges in region Ill for We consider two successive regions. In a reghor(¢)
some limited values of.. Figure 7b) shows that with in- =a;, and in a regiorB, a({)=a,(#a;), wherea, anda,
crease inL, the larger amplitudey; of the soliton gradually ~are arbitrary positive constants. We assume that regids
approaches the asymptotic value with oscillation, and théong enough so that a wave develops into a stationary
smaller amplituder; of the soliton emerges and disappearssoliton near the end of regioh It can be calculated by using
repeatedly and gradually decay with a much slower rate. Eq. (2.5 and Eqs(5.2) where we se€C = \/a, that the single

The asymptotic value oES? estimated folL>1 is ob-  soliton at the end of regioA can be represented by
tained by using Eqg¥5.8) and(4.2), and is shown in Fig. 9.

It can be seen from this figure th&$® decays to the u= a7 sectin7), (6.
asymptotic value with oscillation.

B. 2-bound soliton

where 7 is an appropriate positive constant. Since the in-
jected wave in regiomB is of hyperbolic secant shape, it is
VI. DISCUSSION well known [3] that the number of the soliton®) can be

A. Development into the asymptotic soliton obtained by

Whene is small,|e|] <1, the evolution of the wave in the N2=y|A|2T2/|B,|. (6.2
inhomogeneous regiofregion 1) has been investigated by
the dispersive perturbatid@1] and the variational technique In this case, the number of the solitons is given Ky
[22]. Here, we consider how the incident wave develops into= ya; /a, [cf. Egs.(2.1) and(2.2)]. We conclude that when
the single soliton in region Il intuitively. region A is sufficiently long, the number of the solitons in
The amplitude of the wave at an appropriate pgintn region B is determined by the ratio of valug(&) in each
region Il is given byump for shorter region II, where. region and a bound state soliton emerges in re@omhen
=&,— ¢, and the dependence af,m) on L are shown in  a, is sufficiently smaller tham,.
Fig. 6. In region Il, the amplitude of the wave oscillates Itis shown in Sec. V A that the estimation for a very long
around the asymptotic val ;,?F})) and approaches it as the inhomogeneous region indicates that a 2-bound soliton
wave propagates. emerges from the transmitted waves &#5/4. It should be
Roughly speaking, these phenomena are interpreted awticed that for finite lengtih, a 2-bound soliton can emerge
follows: In region I, the incident soliton propagates without even whene<5/4 and the critical value also depends lon
decay, and this fact indicates that contributions of the derivatsee Fig. 1D It can be seen from Figs. 6 andby that a
tive term and the nonlinear term in the VNLS equatji&g.  2-bound soliton emerges from the transmitted waves when
(2.3] to the incident soliton are balanced. When the waveuamp) is small.
enters region Il, the derivative term and the nonlinear term in  These facts are interpreted as follows. We consider two
the VNLS equation are off balanced, and the wave is in dibers (named fiberF, and fiberF;) under consideration
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with different lengths of the inhomogeneous regibp,and  summarize the profile of the transmitted waves as follows: It
L,(>L4), but with the same value of the inhomogeneity. is found that where is small, the profile of the transmitted
We denote the wave at the right edge of the inhomogeneousave is well approximated by the asymptotic form in the
region byf,(7) andf,(7), respectively, and the ratio of the limit of long region. With the increase o, the property of
amplitude off,(7) and f,(7) by R=maxf,(7)[/maXfi(7)].  the transmitted waves deviates from the one of the incident
We assumdr<1 (or R>1). We note that the wavi (7) is  soliton. For larges, the transmitted waves contain a 2-bound
given by the wave at=¢;+L4 in the inhomogeneous re- soliton.

gion of fiberF,;. When a wave propagates in the inhomo- We have obtained the nonsoliton wave contributigfi®
geneous region of fibeF, , the wave is varied gradually to the quantityE;. We have found thaE{" approaches an
with the distance of the transmissian,We now assume that asymptotic value rapidly with the increaselgfand it would

f,(7) is given by the same function dg(7) with an appro-  be possible to measure the inhomogeneity of optical fibers by
priate scaling of the amplitude and the width. Since the wavehis quantityE{™.

must satisfy the conservation Ig&q. (2.8)], the wavef () The small solitons with nonzero velocitgcattered soli-
can be represented as tons emerge from the transmitted waves for some limited
values of the fiber parameters. It may be necessary to con-
fo(7)=Rf,(R7). 6.3 P y y

sider the emergence of those scattered solitons in some ap-

It has been explained in Sec. Il A that the number of theplica_tions of the soliton. . S
solitons contained in the wavig( ) is calculated by substi- Itis show_n by the asymptotic estimation fo>1 that the
tuting Eq.(6.3) into u in Eq. (3.1). It can be shown from Eq. 2-bound soliton emerges from the transmitted waves when
(3.1 and Eqs(5.7) with C’ = R? that the number of solitons €>5/4. It is interesting to note that for some limited values
contained inf,(7) is the same one which are calculated for Of finite lengths of;nhorr)ogerf?o?s rggclj(_)ns, a 2h-bound soli-
u=(1/R)f(7). We conclude that when the transmitted am-0N emerges even far<5/4. This fact indicates that we can
plitude of the wavef ,(7) is R times smaller(or large) than _generate a 2—bound_ soliton by controlling the length of the
the one of the wavé,(7), the height of the potentialin Eq. mh\?Vmo%eneous re%lon gortimaller dition f i
(3.1 is effectively 1R times higher(or lowen than that of € have considere € condition for generaling a
fi(7). The transmitted wave with the smaller amplitude 2-bound soliton 'when awave has passeq through a poundgry
might have a bound state soliton of two successive regions. When the first region is suffi-
' ciently long, the number of the solitons in the second region
is determined by the ratio of the coefficiera$é) of the
VNLS equation in both regions. When the first region is not
We set the parameter for the intensity of nonuniformity, long enough for the wave to converge to the asymptotic
form, the wave at the end of the first region depends on both
( 1) the intensity ofa(¢) and the length of the first region. We
€= — y

VII. EXACTLY SOLVABLE CASE

1- n_ (7.9 have concluded that the wave contains many solitons in sub-
sequent region when the amplitude of the wave is small at

wheren is a positive integer, so that E€p.4) is reduced to the end of the first region.
U=nsechl. In this case, no nonsoliton waves emerge in the

inhomogeneous region, and the incident wave propagates as ACKNOWLEDGMENTS
an exact soliton in the inhomogeneous redji®f]. Whenn
is larger than 1, the wave is the exaebound soliton and its
envelope pulsates periodically with the frequenel 4 (1
+€)] along with the propagatiof20]. Since the incident
soliton revives its shape periodically, the transmitted wave is

the same as the incident one when the length of the inhomoAPPENDIX A: RENORMALIZATION OF THE INCIDENT

This work was supported by the JSPS and in part by a
Grant-in-Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science, and Technology.

geneous region is SOLITON PARAMETERS
- In this appendix we explain the reason that the parameters
L= 4(1—+6)m, (7.2 of the incident soliton can be set as=0 andn=1, without

loss of generality. When the parameters of the incident soli-

wherem is a positive integer, and it propagates as an exadOn are set ag.= wo and 7= 1o, whereu, and 7, are arbi-
single soliton in the homogeneous region Il1. trary constants, we use the following transformation of vari-

Thus, the incident soliton propagates as exact solitons igbles:
the entire fiber by setting the fiber parameters as EQg)

1 5 (€
and (7.2. uf:n—uexp[i%rﬂ%f a(g”)dg"}, (A1a)
0 0

VIIl. SUMMARY AND CONCLUSION

. . . . . £
W(_a have mv_estlggted n_umenqally the propagation of soli- 7 = o+ Ko Uof a(&"de", (A1b)
tons in the optical fiber with an inhomogeneous region. We 0
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&= ,755_ (Alc) culate the parameters of the stationary soliton, we search for
the eigenvalues dB only in [0,i] on the imaginary axis by

Then, the incident soliton is reduced to the soliton with pa-the following three reasons.
rametersu=0 andnp=1. (1) Since the eigenvalues which correspond to solitons

However, the transformation of variables changes thénave positive imaginary parts, we search for eigenvalues
scale of the length, and then lendttof the inhomogeneous only in the upper half plane Im()>0.
region is varied. This variation df can be absorbed in tHe (2) The energyEq. (2.8)] can be rewritten as
dependence of the transmission profile.

Therefore, assuming that the parameters#) of the in- B % (ns)
cident soliton are chosen arbitrary constants, these cases can Ei= = 27+ B (B2
be reduced to the case where the incident soliton parameters
areu=0 andyp=1. where E(lns) is the energy of nonsoliton wav¢&1,20. The
energy is a positive constakt =2 [see Sec. [lthroughout
APPENDIX B: AN ALTERNATE METHOD the calculation. The amplitudeg; of solitons is positive. It
FOR NUMERICAL CALCULATION can be seen from E@2.9) thatE{\"¥ is non-negative. There-

fore, each term in EqB2) is non-negative; and it is found

¥hat the amplitudey; of solitons, which is derived from the
; ) : . i ,
the discrete eigenvalues of the matfbdefined in Eq(3.4), incident soliton, is less than or equal to 1. Since the ampli-

which coincide with the parameters of solitofsee in Sec. tude »; of the soliton is the imaginary part of the discrete

[II'). We can calculate only the parameters of stationary soli- . . .
tons (velocity y; is 0) by this method; however, we can get eigenvalud see Eq.(3.2)], we search for the discrete eigen

! . . values in ImQ)<1.
results fast with less memory compared with calculating the . . . o
: . (3) The velocity of stationary soliton ig;=0, and the
eigenvalues oB directly. . L .
. velocity u; of the soliton is the real part of eigenval{see
In general, the secular equation ] . . : . .
Eq. (3.2]. We search eigenvalues only in the imaginary axis
de{B—\E)=0 (B1)  onthe complex plane.
Therefore, we can concentrate in d@t{AE) changing\
is accurate ifA is an eigenvalue of the matri®, whereE  in [0,i] on the imaginary axis to calculate the parameters of
denotes an unit matrix. In our model system, when we calthe stationary solitons.

We introduce an alternate method to calculate numericall
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